Distortions in Octahedral Geometry

Regular Octahedron: Complexes with regular octahedral geometry are expected to form, when all of the ligands are of the same kind

Distorted Octahedron: Complexes with distorted octahedral geometry are expected to form, when the ligands are of different kinds

Distortions in Octahedral Geometry

If the ground electronic configuration of a non-linear complex is orbitally degenerate, the complex will distort so as to remove the degeneracy and achieve a lower energy. This is called the **Jahn-Teller Effect**

Teller Distortion

Jahn-Teller Distortion in Cu(II) Complexes

Jahn-Teller Distortion in d⁹ Complexes

 $\Delta o >> \delta 1 > \delta 2.$

Jahn-Teller Distortion in d¹ Complexes

Distortions are more pronounced if the degeneracy occurs in an e_g orbital

Distortions in Low-Spin Complexes

Distortions in High-Spin Complexes

Thermodynamic Aspects of CFSE

Lattice Energy: Estimated using Borne-Lande equation

Site Preference in Spinels

 $Spinel-Mg^{II}Al^{III}{}_2O_4$

A^{II}B^{III}₂O₄

The oxide ions form a close packed arrangement with octahedral and tetrahedral voids and the metal ions occupy the voids.

Normal Spinels: (A^{II})^{tet}(B^{III}₂)^{oct}O₄

The divalent A^{II} ions occupy the tetrahedral voids, whereas the trivalent B^{III} ions occupy the octahedral voids in a close packed arrangement of oxide ions.

MgAl₂O₄, Mn₃O₄, ZnFe₂O₄, FeCr₂O₄

Inverse Spinels: (B^{III})^{tet}(A^{II}B^{III})^{oct}O₄

The A^{II} ions occupy the octahedral voids, whereas half of B^{III} ions occupy the tetrahedral voids.

Fe₃O₄, CoFe₂O₄, NiFe₂O₄

Site Preference in Spinels

NiFe₂O₄

Ni is in +2 oxidation state and has 8 electrons in the *d* orbitals In a tetrahedral void, Configuration $-e^4t_2^4$; CFSE $-0.8 \Delta_t (0.4 \Delta_0)$ In an octahedral void, Configuration $-t_{2g}^6e_g^2$; CFSE $-1.2 \Delta_0$ Fe is in +3 oxidation state and has 5 electrons in the *d* orbitals In a tetrahedral void, Configuration $-e^2t_2^3$; CFSE -0In an octahedral void, Configuration $-t_{2g}^3e_g^2$; CFSE -0

Hence, it is advantageous to have Ni²⁺ ion in the octahedral voids. This results in an inverse spinel structure for the compound.

Fe^{III}[Ni^{II}Fe^{III}]O₄

Site Preference in Spinels

Mn₃O₄

When Mn is in +2 oxidation state, it has 5 electrons in the *d* orbitals In a tetrahedral void, Configuration $-e^2t_2^3$; CFSE -0In an octahedral void, Configuration $-t_{2g}^3e_g^2$; CFSE -0When Mn is in +3 oxidation state, it has 4 electrons in the *d* orbitals In a tetrahedral void, Configuration $-e^2t_2^2$; CFSE $-0.4 \Delta_t$ (**0.2** Δ_0) In an octahedral void, Configuration $-t_{2g}^3e_g^1$; CFSE $-0.6 \Delta_0$

Hence, it is advantageous to have Mn³⁺ ions in the octahedral voids. This results in a normal spinel structure for the compound.

 $Mn^{II}[Mn^{III}]_2O_4$

Origin of Color

The Beer-Lambert Law

 $A = \log_{10}(Io/I) = \varepsilon cl$

where ε is the molar extinction coefficient (in L cm⁻¹ mole⁻¹), c is concentration in mole L⁻¹ and l is the path length in cm. A is known as 'Absorbance' and it is dimensionless.

Color and CFT

 $[V(H_2O)_6]^{3+}$ V(III) = d² ion

 $[V(H_2O)_6]^{2+}$ V(II) = d³ ion

violet light absorbed complex appears yellow

yellow light absorbed complex appears violet

Color and CFT

 $\begin{array}{c}
Cl \\
H_3N & \downarrow \\
H_3N & Cr & NH_3 \\
H_3N & NH_3 \\
NH_3
\end{array}$

Strong ligands, leading to high Δ_0 . Absorbs violet and appears yellow.

Relatively weak set of ligands, leading to reduced Δ_0 . Absorbs yellow and appears magenta.

Laporte Rule

In a molecule or ion possessing center of symmetry, transitions are not allowed between orbitals of same parity. Transitions are only possible between orbitals that differ by $\Delta l = \pm 1$; 'l' is the orbital quantum number.

Examples of forbidden transitions are: *s* to *s*, *d* to *d*, *p* to *f* etc.

Tetrahedral geometry is not affected by this rule as it does not have a center of symmetry.

As a consequence, ε for tetrahedral complexes are 100 times more than the ε for octahedral complexes.

Even octahedral complexes lose their center of symmetry transiently due to unsymmetrical vibrations. This leads to color in octahedral and square planar complexes

Spin-forbidden and Spin-allowed Transitions

Any transition for which $\Delta S^1 \neq 0$ is *strongly forbidden*; that is, in order to be allowed, a transition must involve no change in spin state.

 $[Mn(H_2O)_6]^{2+}$ has a d^5 metal ion and is a high-spin complex. Electronic transitions are not only Laporte-forbidden, but also spin-forbidden. The dilute solutions of Mn^{2+} complexes are therefore colorless.

However, certain complexes such as MnO4⁻, CrO4²⁻ etc are intensely colored even though they have metal ions without electrons in the d orbitals. The color of these complexes are not from d-d transitions, but from charge-transfer from ligand to metal orbitals.

<u>d⁰</u> and <u>d¹⁰</u> ions have no <u>d-d</u> transitions

Zn ²⁺	d ¹⁰ ion	white
TiF ₄	d ⁰ ion	white
TiCl ₄	d ⁰ ion	white
TiBr ₄	d ⁰ ion	orange
Til ₄	d ⁰ ion	dark brown
[MnO ₄]⁻ Mn(VII) [Cr ₂ O ₇]⁻ Cr(VI)	d ⁰ ion d ⁰ ion	extremely purple bright orange
[Cu(MeCN) ₄] ⁺ Cu(I)	d ¹⁰ ion	colourless
[Cu(phen) ₂]+ Cu(I)	d ¹⁰ ion	dark orange